, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

As published by “The Conversation”, August 19, 2015:
The risks attached to South Africa’s nuclear energy strategy By Vladimir Slivyak, Russian National Research University The Higher School of Economics

According to Energy Minister Tina Joemat-Pettersson, the South African government has entered into a nuclear energy procurement process likely to be completed as early as 2016. So far, South Africa has signed Intergovernmental Framework Agreements on nuclear co-operation with Russia, France, China, South Korea and the US. The Conversation

The agreement with Russia is very advanced compared to the others. This leads to the assumption that the procurement process will result in risky Russian reactors with a total capacity of 9.6 GW.

The risk of nuclear power to South Africa comes from the high costs of nuclear construction. It also comes with decommissioning nuclear plants, and safety concerns regarding the Russian nuclear industry.

Nuclear energy is expensive

Today, a 1000 MWt reactor costs at least US$6 billion. But the real question is, does nuclear technology produce cheap electricity? Two recent South African studies have found that nuclear generated electricity will be more expensive than the electricity generated by new coal plants, solar photovoltaic panels and wind.

The Council for Scientific and Industrial Research projects the levelised cost of electricity from nuclear power to be R1/kWh, R0.80/kWh from new coal, R0.80/kWh from solar photo voltaic, and R0.60/kWh from wind in today’s prices.

Analysis by another South African institute also projects that the levelised cost of nuclear energy to be higher than most other technologies. Both studies are inclusive of capital‚ finance‚ maintenance and fuel costs.

As the projected costs of electricity reveal, committing to a nuclear future now is senseless. A report by a Swiss-based banking firm claimed:

We believe solar will eventually replace nuclear and coal, and be established as the default technology of the future to generate and supply electricity.

Africa joins the renewable revolution

145 countries, including African ones, have introduced various policies in support of renewable energy generation. Next year Kenya will increase its renewable capacity by 1.4 GW and will generate more than half of its required electricity from solar plants by 2016.

It is projected that Kenyans will enjoy electricity at a rate 80% cheaper than current costs once the project is complete.

Even Ethiopia has plans to install 570 MW worth of geothermal and wind capacity. South Africa also has approved large amounts of money dedicated to renewable energy projects. Investment in renewables in Africa is expected to exceed US$7 billion by 2016.

The future doesn’t look good for nuclear

Despite the nuclear industry’s enormous state funding and political support, the contribution of nuclear to the world’s primary energy production has dropped from 8% in 2000 to around 4.4% in 2014.

The reason behind the decline in nuclear power across the world is simple. Most nuclear reactors currently operating were built back in the 1960s and 1970s. These old reactors were designed for a lifespan of 30 to 40 years. Although some have been granted renewed licenses to operate for another one or two decades, nuclear reactors are not eternal and most now require decommissioning.

Decommissioning requires clean-up of radioactive wastes and demolition of nuclear plants. Because it involves high-level radioactive wastes, it is hazardous for workers and the environment. It is also time intensive. The costs of decommissioning depends on the technology. Some of the radioactive wastes will remain dangerous for thousands of years.

Limited experience with nuclear decommissioning exists around the world and cost overruns are common issue in this field. The UK authorities estimated the cost of decommissioning for 19 existing nuclear sites at £100 billion in 2012.

According to a report, more than 200 of the world’s nuclear reactors will reach the end of their designed operation lifetime by 2030. Decommissioning these old reactors can be as expensive as construction costs.

The decommissioning programme in France alone is estimated at €300 billion, and this cost will likely escalate further.

Accidents are a very real threat

Russia and the previous Soviet Union has experienced many problems as a consequence of nuclear power development. The largest nuclear accident in the history of humankind, the reactor explosion at Chernobyl in 1986 is infamous across the world. According to the latest scientific data, more than one million people in different countries were affected by this catastrophe.

Before Chernobyl, a lesser-known accident occurred at the Mayak nuclear facility in South Urals. A tank containing radioactive waste exploded resulting in about 20,000 square kilometres of contaminated territory and the forced resettlement of 10,000 local residents. Thousands of locals were sent to clean up the radioactive mess, including 2000 pregnant women.

The Mayak disaster happened in the late 1950s, but the world only became aware of it 30 years later. Despite the disaster, the nuclear facility at Mayak continued to dump radioactive waste from it’s spent fuel reprocessing operations into the nearby Techa river up until at least 2005. There are thousands of local residents living there until today. To date, the Russian nuclear industry has yet to accept full responsibility for the damage done at Mayak.

It is not only Russian nuclear industry which had terrible nuclear accidents. Reactors were melting in Fukushima in Japan; Three Mile Island in the US; Sellafield in the UK. There are dozens of smaller but still very dangerous events. But Russian industry definitely occupies one of the top places in this list.

From this, it is no surprise that when the agreement was signed between South Africa and Russia, this clause was included:

In the case of a nuclear accident, South Africa will accept all of the liability.

Russian nuclear federation Rosatom has launched a large public relations campaign in South Africa with the intention of convincing the public that nuclear power is the solution to the electricity crisis. Rosatom’s campaign makes use of several well-known nuclear lobbyists and deliberately misrepresents key information, such as the real cost of nuclear power and the status of the global nuclear industry.

The Nkandla scandal is a drop in the ocean compared with the pending Russian nuclear deal. South African civil society must take a stand now towards the future it wants before it is too late.

Vladimir Slivyak, Senior Lecturer of Environmental Policy , Russian National Research University The Higher School of Economics

This article was originally published on The Conversation. Read the original article.